20 research outputs found

    A high efficiency photon veto for the Light Dark Matter eXperiment

    Get PDF
    Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10⁻¹³ rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies

    A high efficiency photon veto for the Light Dark Matter eXperiment

    Get PDF
    Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10⁻¹³ rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies

    Photon-rejection Power of the Light Dark Matter eXperiment in an 8 GeV Beam

    Full text link
    The Light Dark Matter eXperiment (LDMX) is an electron-beam fixed-target experiment designed to achieve comprehensive model independent sensitivity to dark matter particles in the sub-GeV mass region. An upgrade to the LCLS-II accelerator will increase the beam energy available to LDMX from 4 to 8 GeV. Using detailed GEANT4-based simulations, we investigate the effect of the increased beam energy on the capabilities to separate signal and background, and demonstrate that the veto methodology developed for 4 GeV successfully rejects photon-induced backgrounds for at least 2×10142\times10^{14} electrons on target at 8 GeV.Comment: 28 pages, 20 figures; corrected author lis

    Light meson spectroscopy from Dalitz plot analyses of ηc decays to η0 K+K− , η0 π + π − , and ηπ + π − produced in two-photon interactions

    Get PDF
    We study the processes γγ→ηc→η′K+K−, η′π+π−, and ηπ+π− using a data sample of 519  fb−1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e− collider at center-of-mass energies at and near the Υ(nS) (n=2, 3, 4) resonances. This is the first observation of the decay ηc→η′K+K− and we measure the branching fraction Γ(ηc→η′K+K−)/(Γ(ηc→η′π+π−)=0.644±0.039stat±0.032sys. Significant interference is observed between γγ→ηc→ηπ+π− and the nonresonant two-photon process γγ→ηπ+π−. A Dalitz plot analysis is performed of ηc decays to η′K+K−, η′π+π−, and ηπ+π−. Combined with our previous analysis of ηc→K¯Kπ, we measure the K∗0(1430) parameters and the ratio between its η′K and πK couplings. The decay ηc→η′π+π− is dominated by the f0(2100) resonance, also observed in J/ψ radiative decays. A new a0(1700)→ηπ resonance is observed in the ηc→ηπ+π− channel. We also compare ηc decays to η and η′ final states in association with scalar mesons as they relate to the identification of the scalar glueball.publishedVersio

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    Measurement of the mass of the τ lepton

    Full text link

    Adherence to clinical guidelines is associated with reduced inpatient mortality among children with severe anemia in Ugandan hospitals.

    Get PDF
    BACKGROUND: In resource limited settings, there is variability in the level of adherence to clinical guidelines in the inpatient management of children with common conditions like severe anemia. However, there is limited data on the effect of adherence to clinical guidelines on inpatient mortality in children managed for severe anemia. METHODS: We analyzed data from an uncontrolled before and after in-service training intervention to improve quality of care in Lira and Jinja regional referral hospitals in Uganda. Inpatient records of children aged 0 to 5 years managed as cases of 'severe anemia (SA)' were reviewed to ascertain adherence to clinical guidelines and compare inpatient deaths in SA children managed versus those not managed according to clinical guidelines. Logistic regression analysis was conducted to evaluate the relationship between clinical care factors and inpatient deaths amongst patients managed for SA. RESULTS: A total of 1,131 children were assigned a clinical diagnosis of 'severe anemia' in the two hospitals. There was improvement in the level of care after the in-service training intervention with more children being managed according to clinical guidelines compared to the period before, 218/510 (42.7%) vs 158/621 (25.4%) (p < 0.001). Overall, children managed according to clinical guidelines had reduced risk of inpatient mortality compared to those not managed according to clinical guidelines, [OR 0.28, (95%, CI 0.14, 0.55), p = 0.001]. Clinical care factors associated with decreased risk of inpatient death included, having pre-transfusion hemoglobin done to confirm diagnosis [OR 0.5; 95% CI 0.29, 0.87], a co-morbid diagnosis of severe malaria [OR 0.4; 95% CI 0.25, 0.76], and being reviewed after admission by a clinician [OR 0.3; 95% CI 0.18, 0.59], while a co-morbid diagnosis of severe acute malnutrition was associated with increased risk of inpatient death [OR 4.2; 95% CI 2.15, 8.22]. CONCLUSION: Children with suspected SA who are managed according to clinical guidelines have lower in-hospital mortality than those not managed according to the guidelines. Efforts to reduce inpatient mortality in SA children in resource-limited settings should focus on training and supporting health workers to adhere to clinical guidelines

    High rate of inappropriate blood transfusions in the management of children with severe anemia in Ugandan hospitals.

    Get PDF
    BACKGROUND: Severe anaemia (SA) is a common reason for hospitalisation of children in sub-Saharan Africa but the extent to which blood transfusion is used appropriately in the management of severe anemia has hitherto remained unknown. We report on the use of blood transfusion in the management of anemic children in two hospitals in Uganda. METHODS: Inpatient records of children 0-5 years of age admitted to Lira and Jinja regional referral hospitals in Uganda were reviewed for children admitted on selected days between June 2016 and May 2017. Data was extracted on the results, if any, of pre-transfusion hemoglobin (Hb) level, whether or not a blood transfusion was given and inpatient outcome for all children with a diagnosis of 'severe anemia'. Qualitative data was also collected from health workers to explain the reasons for the clinical practices at the two hospitals. RESULTS: Overall, 574/2275 (25.2%) of the children admitted in the two hospitals were assigned a diagnosis of SA. However 551 (95.9%) of children assigned a diagnosis of SA received a blood transfusion, accounting for 551/560 (98.4%) of the blood transfusions in the pediatric wards. Of the blood transfusions in SA children, only 245 (44.5%) was given appropriately per criteria (Pre-transfusion Hb ≤ 6 g/dL), while 306 (55.5%) was given inappropriately; (pre-transfusion Hb not done, n = 216, or when a transfusion is not indicated [Hb > 6.0 g/dl], n = 90). SA children transfused appropriately per Hb criteria had lower inpatient mortality compared to those transfused inappropriately, (7 (2.9%) vs. 22 (7.2%), [OR 0.4, 95% CI 0.16, 0.90]). Major issues identified by health workers as affecting use of blood transfusion included late presentation of SA children to hospital and unreliable availability of equipment for measurement of Hb. CONCLUSION: More than half the blood transfusions given in the management of anemic children admitted to Lira and Jinja hospitals was given inappropriately either without pre-transfusion Hb testing or when not indicated. Verification of Hb level by laboratory testing and training of health workers to adhere to transfusion guidelines could result in a substantial decrease in inappropriate blood transfusion in Ugandan hospitals

    A high efficiency photon veto for the Light Dark Matter eXperiment

    No full text
    Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10−13 rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies. [Figure not available: see fulltext.
    corecore